クメンヒドロペロキシドの爆発・火災

<table>
<thead>
<tr>
<th>反応の種類</th>
<th>酸化</th>
<th>単位工程</th>
<th>その他</th>
<th>発生年度・場所</th>
</tr>
</thead>
<tbody>
<tr>
<td>原因要素</td>
<td>不安定物質の生成</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>人的被害</td>
<td>火傷1名</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>物的被害</td>
<td>熱交換器破損</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

＜工程フロー＞

クメンヒドロペロキシド

\[\alpha - \text{クミルアルコール} \rightarrow \text{ジクミルヒドロペルオキシド} \rightarrow \text{熟成} \rightarrow \text{洗浄} \rightarrow \text{アルカリ洗浄} \rightarrow \text{精製} \]

＜化学反応式＞

\[
\begin{align*}
\text{OOH} & \quad \text{H₃C-} \quad \text{H₃C-} \\
\text{CH₃} & \quad \text{CH₃}
\end{align*}
\]

クメンヒドロペロキシド \(\alpha - \text{クミルアルコール} \) ジクミルペルオキシド

＜発生概要＞

クメンヒドロペロキシド（CHP）と \(\alpha - \text{クミルアルコール} \) からジクミルペロキシド（DCP）を製造するプロセスで、反応熱成槽熱交換器（42℃なるよう熱水と冷水を交互に循環）の間のもどり流量計で、警報がなった直後に外部熱交換器（スパイラル型）が爆発し、運転者が火傷を負った。

＜発生原因＞

主触媒の水酸化カリウムとDCP触媒の過塩素酸の中和反応により生成した、過塩素酸カリウムなどが熟成槽や熟交換器内部に析出、沈着し、それとDCPとの接触で爆発性混合物となって発熱分解したものですと推定される。

＜安全データ＞

クメンヒドロペロキシド：
- \(\text{T}_{\text{act}} = 124℃ \)
- \(Q_{\text{act}} = 1864\, \text{J/g} \)
- 引火点 = 79℃
- 加熱すれば爆発

ジクミルヒドロペルオキシド：
- \(\text{T}_{\text{act}} = 117℃ \)
- \(Q_{\text{act}} = 880\, \text{J/g} \)
- 引火点 = 71℃
- SADT = 118℃ 強い酸化性物質

＜参考文献＞

内田剛史他。安全工学シンポジウム予稿集（1992）